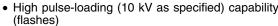
Vishay BCcomponents


High Voltage Surge Resistor

A metal glazed film is deposited on a high grade ceramic body. After that caps are applied to the rods and tinned electrolytic copper wires are welded to these end caps.

The resistors are coated with a light-blue lacquer which provides electrical, mechanical and climatic protection.

FEATURES

- · Good replacement for carbon-composite resistors
- Lead (Pb)-free solder contacts
- Pure Tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)

APPLICATIONS

 Application in overload and high voltage pulse hazard circuits (TV-sets, monitors), high power electronic ballasts

The encapsulation is resistant to all cleaning solvents according to "MIL-STD 202E, method 215" and "IEC 60068-2-45".

TECHNICAL SPECIFICATIONS			
DESCRIPTION			
Resistance range	47 Ω to 820 Ω	1 kΩ to 10 kΩ	
Resistance tolerance and series	$47~\Omega$ to $180~\Omega$: ± 20 220 Ω to 10 k Ω : ± 10 %; =		
Maximum dissipation at T _{amb} = 70 °C	0.5 W		
Thermal resistance, R _{th}	120 K/V	V	
Temperature coefficient	47 Ω to 180 Ω : 0 to + 1500 × 10 ⁻⁶ /K 220 Ω to 910 Ω : 0 to + 600 × 10 ⁻⁶ /K	- 600 to + 200 × 10 ⁻⁶ /K	
Voltage coefficient	0 to + 350 × 10 ⁻⁶ /V	\pm 50 \times 10 ⁻⁶ /V	
Maximum permissible voltage	$V = \sqrt{P_n \times R}$		
Dielectric withstanding voltage of the insulation for 1 minute	700 V		
Basic specifications	IEC 60115-1B	-	
Climatic category (IEC 60068)	55/155/56		
Stability after:			
load (1000 hours) $\Delta R/R \text{ max.: } \pm 3$		% + 0.1 Ω	
climatic test	Δ R/R max.: ± 3 % + 0.1 Ω		
soldering	Δ R/R max.: ± 1 % + 0.1 Ω		
High voltage test for R-value $>$ 3.3 kΩ, 10 kV; 1 nF; 50 \times 12/minutes	ΔR/R max.: ± 20 % (typical value ± 10 %)		
ESD contact discharge 12 kV; 100 pulses	Δ R/R max.: ± 20 % (typical value: ± 10 %)		

12NC INFORMATION

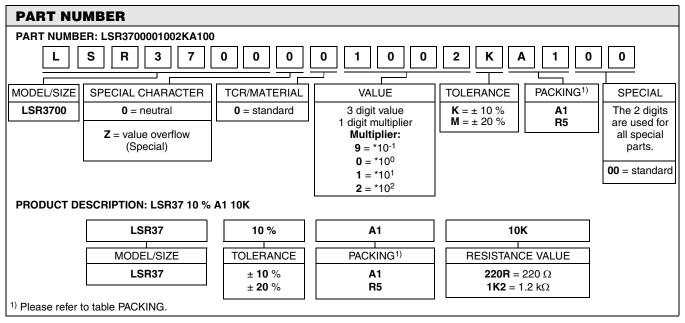
- The resistors have a 12-digit numeric code starting with 2322 245
- The subsequent 2 digits indicate the resistor type and packing
- The remaining digits indicate the resistance value:
 - The first 2 digits indicate the resistance value
 - The last digit indicates the resistance decade

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
47 to 82 Ω	9
100 to 820 Ω	1
1 to 9.1 kΩ	2
10 kΩ	3

12NC Example

The 12NC for a LSR37, resistor value 1.5 k Ω , 10 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 245 12152.


For technical questions, contact: <u>ff3dresistors@vishay.com</u>

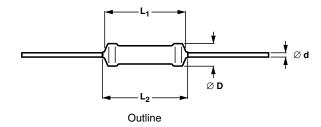
Document Number: 28735

Revision: 13-Jul-06

Vishay BCcomponents

12NC - resistor type and packing				
	TOLERANCE	ORDERING CODE 2322 245		
TYPE	(%)	1000 UNITS 5000 UNITS IN AMMOPACK ON REEL		
LSR37	± 10	12	22	
Lono/	± 20	11	21	

Note


Products can be ordered using either the 12NC or the PART NUMBER. The PART NUMBER is shown to facilitate the introduction of a unified part numbering system. Currently, this PART NUMBER is applicable in the Americas and Asia only.

PACKING				
CODE	PIECES	DESCRIPTION	MODEL/SIZE	
A1	1000	Bandolier in ammopack straight leads	LSR37	
R5	5000	Bandolier on reel straight leads	Lono/	

Document Number: 28735 Revision: 13-Jul-06 For technical questions, contact: ff3dresistors@vishay.com

DIMENSIONS

DIMENSIONS - resistor type and relevant physical dimensions				
TYPE	∅ D MAX.	L ₁ MAX.	L ₂ MAX.	Ø d
LSR37	4.0	9.0	10.0	0.7 ± 0.03

MASS PER 100 UNITS		
TYPE	MASS (g)	
LSR37	45.7	

MARKING

The nominal resistance and tolerance are marked on the resistor using colored bands in accordance with IEC publication 60 062 "Color codes for fixed resistors".

Three bands are used for 20 % tolerance with no indication for the tolerance. Four bands are used for 10 % tolerance.

Grey is used instead of silver for 10 % because metal particles in the lacquer could affect high-voltage properties.

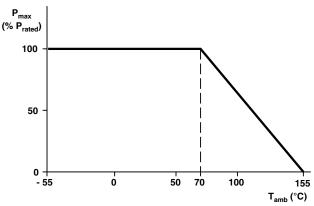
OUTLINES

The length of the body (L₁) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION

Standard values of rated resistance (nominal resistance) are taken from the E12 series with a tolerance of 10 % or 20 %. The values of the E12 series are in accordance with "IEC publication 60063".

The limiting voltage DC is not applicable, because the maximum rated voltage for the maximum R_n -value of 10 k Ω at P_n = 0.5 W is only 70.7 V.


LIMITING VALUES				
TYPE	LIMITING VOLTAGE ¹⁾ (V)	LIMITING POWER (W)		
LSR37	$V = \sqrt{P_n \times R}$	0.5		

Note

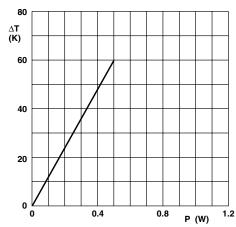
1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

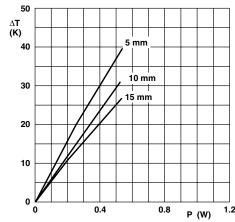
The maximum permissible hot-spot temperature is 155 °C.

Document Number: 28735 Revision: 13-Jul-06

The power that the resistor can dissipate depends on the operating temperature

Maximum dissipation (P_{max}) in percentage of rated power as a function of the ambient temperature (T_{amb}).


Derating


Pulse on a regular basis; maximum permissible peak pulse power $\mathbf{\hat{P}}_{max}$ as a function of pulse duration (t_i) for single pulse condition

Pulse Loading Capability

The resistors with straight leads are suitable for processing on automatic insersion equipment and cutting and bending machines. the minimum pitch for this type is 6e (15 mm). For temperature rise at soldering place see figures below.

Hot-spot temperature rise (ΔT) as a function of dissipated power

Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting

Application Information

Vishay BCcomponents

High Voltage Surge Resistor

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and

under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

TEST PROCEDURES AND REQUIREMENTS				
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.16	21 (U)	robustness of terminations:		
4.16.2	21 (Ua1)	tensile all samples	Ø 0.7 mm; load 10 N; 10 s	number of failures $< 10 \times 10^{-6}$
4.16.3	21 (Ub)	bending half number of samples	Ø 0.7 mm; load 5 N; 4 × 90°	number of failures $< 10 \times 10^{-6}$
4.16.4	21 (Uc)	torsion other half of samples	$3\times360^{\circ}$ in opposite directions	no damage Δ R/R max.: ± 1.0 % + 0.10 Ω
4.17	20 (Ta)	solderability	2 s; 235 °C	good tinning; no damage
4.18	20 (Tb)	resistance to soldering heat	thermal shock: 3 s; 350 °C; 3 mm from body	Δ R/R max.: ± 1.0 % + 0.10 Ω
4.19	14 (Na)	rapid change of temperature	30 minutes at - 55 °C and 30 minutes at + 155 °C; 5 cycles	Δ R/R max.: ± 1.0 % + 0.10 Ω
4.20	29 (Eb)	bump	3 × 1500 bumps in 3 directions; 40 g	no damage Δ R/R max.: ± 1.0 % + 0.10 Ω
4.22	6 (Fc)	vibration	frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 hours (3 × 2 hours)	no damage Δ R/R max.: ± 1.0 % + 0.10 Ω

Vishay BCcomponents

TEST PROCEDURES AND REQUIREMENTS				
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.23		climatic sequence:		
4.23.2	2 (Ba)	dry heat	16 hours; 155 °C	
4.23.3	30 (Db)	damp heat (accelerated) 1st cycle	24 hours; 55 °C; 90 to 100 % RH	${\sf R}_{\sf ins}$ min.: 10 3 M Ω
4.23.4	1 (Aa)	cold	2 hours; - 55 °C	Δ R/R max.: ± 3.0 % + 0.1 Ω
4.23.5	13 (M)	low air pressure	2 hours; 8.5 kPa; 15 to 35 °C	
4.23.6	30 (Db)	damp heat (accelerated) remaining cycles	5 days; 55 °C; 95 to 100 % RH	
4.24.2	3 (Ca)	damp heat (steady state)	56 days; 40 °C; 90 to 95 % RH; dissipation 0.01 P _n ; limiting voltage 100 V (DC)	Δ R/R max.: ± 3.0 % + 0.1 Ω
4.25.1		endurance	1 000 hours at 70 °C; P _n or V _{max}	Δ R/R max.: ± 3.0 % + 0.1 Ω
4.8.4		temperature coefficient	47 Ω to 180 Ω	0 to + 1500 × 10 ⁻⁶ /K
			220 Ω to 910 Ω	0 to + 600×10^{-6} /K
			1 kΩ to 10 kΩ	- 600 to + 200 × 10 ⁻⁶ /K
4.7		voltage proof on insulation	700 V (RMS) during 1 minute; V-block method	no breakdown
4.6.1.1		insulation resistance	500 V (DC) during 1 minute; V-block method	R_{ins} min.: 10^4 $M\Omega$
4.13		short time overload	room temperature; dissipation $6.25 \times P_n$; 10 cycles; 5 s on and 45 s off	Δ R/R max.: ± 2.5 % + 0.10 Ω
		high voltage pulse 10 kV; 1 nF; 50 × 12/min	for $R_n > 3.3 \ k\Omega$	Δ R/R max.: ± 20 % (typical value ± 10 %)
		12 kV ESD test; 100 pulses	ESD contact discharge	Δ R/R max.: ± 20 % (typical value: ± 10 %)
4.26		active flammability "Cheese-cloth test"	5 × P _n (RMS) duration 5 minutes	no flaming of gauze cylinder
OTHER TE	ST IN ACCOR	RDANCE WITH IEC 60695		
2.2		passive flammability "Needle-flame test"	application of test flame for 20 s	no ignition of product no ignition of under-layer burning time less than 30 s

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05