Vishay Beyschlag

CMOS circuitry.

High Ohmic Flat Chip Resistors

OCT 0603 and OCU 0805 high ohmic flat chip resistors are best suited where high resistance, high stability and high reliability are required. Typical applications include any kind of battery driven electronics, particularly low consumption

FEATURES

- Unique very high ohmic chip resistor product
- Standard TC: ± 100 ppm/K
- Excellent overall stability
- Low voltage coefficient: 0.05 %/V
- Wide high ohmic range: > 10 $M\Omega$ to 130 $M\Omega$
- Pure Sn termination on Ni barrier layer
- Compatible with lead (Pb)-free and lead containing soldering processes
- Lead (Pb)-free and RoHS compliant

APPLICATIONS

- Any kind of battery driven electronics
- Low consumption CMOS circuitry
- · Small signal measurement

METRIC SIZE					
INCH:	0603	0805			
METRIC:	RR 1608M	RR 2012M			

TECHNICAL SPECIFICATIO	NS				
DESCRIPTION	OCT 0603		OCU 0805		
Metric size	RR 1	1608M	RR 2	2012M	
Resistance range	11 MΩ t	ο 130 ΜΩ	11 MΩ t	ο 130 ΜΩ	
Resistance tolerance		±	5 %		
Temperature coefficient		± 250 ppm/k	K; ± 100 ppm/K		
Operation mode	standard	power	standard	power	
Climatic category (LCT/UCT/days)	55/125/56	55/155/56	55/125/56	55/155/56	
Rated dissipation, P ₇₀ ¹⁾		limited	d by U _{max}		
Operating voltage, U _{max} AC/DC	75 V	150 V	150 V	200 V	
Film temperature	125 °C 155 °C		125 °C 155 °C		
Max. resistance change at P70		•	· · · · ·		
for resistance range,	11 MΩ	to 47 MΩ	11 M Ω to 47 M Ω		
$\Delta R/R$ max., after:					
1000 h	≤ 1 %	≤ 2 %	≤ 1 %	≤ 2 %	
8000 h	≤ 2 %	≤ 4 %	≤ 2 %	≤ 4 %	
Specified lifetime		80	00 h		
Insulation voltage:					
1 minute; U _{ins}	100 V		200 V		
continuous	75 V		75 V		
Failure rate	\leq 2 × 10 ⁻⁹ /h		\leq 2 × 10 ⁻⁹ /h		

Note

1. The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded.

High Ohmic Flat Chip Resistors

Vishay Beyschlag

12NC INFORMATION

- The resistors have a 12-digit numeric code starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 MΩ to 99.9 MΩ	6

Last Two Digits Indicating Sequential Code Number

RESISTANCE VALUE	LAST DIGITS
100 MΩ	01
110 MΩ	02
120 MΩ	03
130 MΩ	04

12NC Example

The 12 NC of a OCT 0603 resistor, value 51 M Ω and TC 250 with \pm 5 % tolerance, supplied in cardboard tape of 20000 units per reel is: 2312 209 35106.

The 12 NC of a OCT 0603 resistor, value 130 M Ω and TC 250 with ± 5 % tolerance, supplied in cardboard tape of 5000 units per reel is: 2312 219 90104.

12NC - re	esistor type an	d packing				
			ON	ORDERING CO	DDE 2312	
DESCRIPTION			SN	CARDBOARD TAPE ON REEL		
TYPE	T.C.	TOL.	RESISTANCE VALUE	P5 5 000 UNITS	PW 20 000 UNITS	
	± 250 ppm/K	± 5 %	51 MΩ to 91 MΩ	219 3	209 3	
OCT 0603			\geq 100 M $\Omega^{1)}$	219 901	209 901	
	± 100 ppm/K	±5%	11 M Ω to 47 M Ω	219 3	209 3	
OCU 0805	± 250 ppm/K	250 ppm/K ± 5 % -	51 M Ω to 91 M Ω	259 3	249 3	
			\geq 100 M $\Omega^{1)}$	259 901	249 901	
	± 100 ppm/K	± 5 %	11 M Ω to 47 M Ω	259 3	249 3	

Note

1. Readable coding of resistance values is restricted to values below 100 MΩ. For resistance values from 100 MΩ onwards, refer to the pre-defined Table of non-readable sequential numbers above.

Resistance ranges printed in bold are preferred T.C. / tolerance combinations with optimized availability.

Note

- 2. Products can be ordered using either the PRODUCT DESCRIPTION or the 12 NC.
- 3. The PART NUMBER is shown to facilitate the introduction of a unified part numbering system. Currently, this PART NUMBER is applicable in the Americas only.
- 4. Please refer to table PACKING, page 112.

OCT 0603, OCU

Vishay Beyschlag

High Ohmic Flat Chip Resistors

PACKING		
	REI	EL
MODEL	PIECES/ PAPER TAPE ON REEL	CODE
OCT0603	5000	P5
0010003	20000	PW
00110805	5000	P5
0000005	20000	PW

DIMENSIONS

DIMENSIONS - CHIP resistor types, mass and relevant physical dimensions							
TYPE	H (mm)	L (mm)	W (mm)	W _T (mm)	T ₁ (mm)	T ₂ (mm)	MASS (mg)
OCT 0603	0.45 + 0.1/- 0.05	1.55 ± 0.05	0.85 ± 0.1	> 75 % of W	0.3 + 0.15/- 0.2	0.3 + 0.15/- 0.2	1.9
OCU 0805	0.45 + 0.1/- 0.05	2.0 ± 0.1	1.25 ± 0.15	> 75 % of W	0.4 + 0.1/- 0.2	0.4 + 0.1/- 0.2	4.6

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE					
DESCI	RIPTION	RESISTANO	E VALUE ⁽¹⁾		
T.C.	TOLERANCE	OCT 0603	OCU 0805		
± 250 ppm/K	± 5 %	51 M Ω to 130 M Ω	51 M Ω to 130 M Ω		
± 100 ppm/K	± 5 %	11 M Ω to 47 M Ω	11 MΩ to 47 MΩ		

Note

1. Resistance values to be selected from E24 series.

Resistance ranges printed in **bold** are preferred T.C. / tolerance combinations with optimized availability.

High Ohmic Flat Chip Resistors

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A newly developed cermet layer is deposited on a super high grade (Al_2O_3) ceramic substrate and conditioned to achieve the desired temperature coefficient. Inner contacts are built on both sides of the substrate. A special laser is used to achieve the target value by smoothly cutting the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with **EN 60286-3**.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The resistors are lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with the CEFIC-EECA-EICTA list of legal restrictions on hazardous substances.

This includes full compliance with the following directives:

- 2000/53/EC End of Vehicle life Directive (ELV)
- 2000/53/EC Annex II to End of Vehicle Life Directive (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

Solderability is specified for 2 years after production or re-qualification. The permitted storage time is 20 years.

APPROVALS

The resistors are tested in accordance with EN 140 401-802 (superseding CECC 40 401-802) which refers to EN 60115-1 and EN 140 400.

Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with EN 100114-1.

OCT 0603, OCU

Vishay Beyschlag

High Ohmic Flat Chip Resistors

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, Generic specification (includes tests)

EN 140 400, Sectional specification (includes schedule for qualification approval)

EN 140 401-802, Detail specification (includes schedule for conformance inspection)

The components are approved in accordance with the European CECC-system, where applicable. The following table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C

Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to1 060 mbar).

The components are mounted for testing on boards in accordance with EN 60115-1, 4.31 unless otherwise specified.

The requirements stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140 401-802. However, some additional tests and a number of improvements against those minimum requirements have been included.

TEST P	TEST PROCEDURES AND REQUIREMENTS				
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ R/R)	
			stability for product types:		
			OCT 0603	11 M Ω to 130 M Ω	
			OCU 0805	11 M Ω to 130 M Ω	
4.5	-	resistance	U = 100 V	± 5 %	
4.8.4.2	-	temperature coefficient	at 20 / - 55 / 20 °C and 20 / 125 / 20 °C	± 250 ppm/K; ± 100 ppm/K	
4.25.1	-	endurance at 70 °C: standard operation mode	U = U _{max} ; 1.5 h on; 0.5 h off 70 °C; 1000 h 70 °C; 8000 h	±1% ±2%	
4.25.3	-	endurance at upper category temperature	125 °C; 1000 h 155 °C; 1000 h	± 2 % ± 3 %	
4.24	78 (Cab)	damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	±1%	
4.23 4.23.2 4.23.3 4.23.4 4.23.5 4.23.6	2 (Ba) 30 (Db) 1 (Aa) 13 (M) 30 (Db)	climatic sequence: dry heat damp heat, cyclic cold low air pressure damp heat, cyclic	UCT; 16 h 55 °C; 24 h; > 90 % RH; 1 cycle LCT; 2 h 8.5 kPa; 2 h; 25 ± 10 °C 55 °C; 5 days; > 95 to 100 % RH; 5 cycles LCT = - 55 °C; UCT = 125 °C	±1% no visible damage	
_	1 (Aa)	cold	- 55 °C; 2 h	± 0.5 %	

High Ohmic Flat Chip Resistors

Vishay Beyschlag

TEST P	ROCEDU	RES AND REQUIRE	MENTS - continued	
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ R/R)
			stability for product types:	
			OCT 0603	11 M Ω to 130 M Ω
			OCU 0805	11 M Ω to 130 M Ω
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; LCT = -55 °C; UCT = 125 °C; 5 cycles LCT = -55 °C; UCT = 125 °C; 1000 cycles	± 0.5 % no visible damage ± 1 % no visible damage
4.13	-	short time overload	$U = 2 \times U_{max}$; 5 s	± 0.5 %
4.27	_	single pulse high voltage overload; standard operation mode	severity no. 4, U = 2 \times U _{max} ; 10 pulses 10 μ s/700 μ s	± 1 % no visible damage
4.22	6 (Fc)	vibration	endurance by sweeping; 10 to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s^2; 6 h	± 0.5 % no visible damage
4.17.2	58 (Td)	solderability	solder bath method;	
			SnPb40; non-activated flux (215 \pm 3) °C; (3 \pm 0.3) s	
				good tinning (> 95 % covered); no visible damage
			SnAg3Cu0,5 or SnAg3,5; non-activated flux (235 \pm 3) °C; (2 \pm 0.2) s	
4.18.2	58 (Td)	resistance to soldering heat	solder bath method; (260 \pm 5) °C; (10 \pm 1) s	± 0.5 % no visible damage
4.29	45 (XA)	component solvent resistance	isopropyl alcohol + 50 °C; method 2	no visible damage
4.32	21 (Ue ₃)	shear (adhesion)	RR 1608M; 9 N	
			RR 2012M; 45 N	no visible damage
4.33	21 (Ue ₁)	substrate bending	depth 2 mm, 3 times	± 0.5 % no visible damage, no
				open circuit in bent position
4.7	-	voltage proof	$U_{rms} = U_{ins}; 60 \pm 5 s$	no flashover or breakdown
4.35	_	flammability	IEC 60695-2-2, needle flame test; 10 s	no burning after 30 s

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.