WIMA MKM 4

Metallized Capacitors with Mixed Dielectric PCM 7.5 mm to 37.5 mm

Special Features

- High volume/capacitance ratio Self-healing
- Constant capacitance value
- versus temperature (similar to the obsolete Polycarbonate)
- Low dissipation factor
- According to RoHS 2002/95/EC

Typical Applications

For general DC-applications requiring a high capacitance stability versus temperature e.g. Automotive electronics Lighting

Construction

Dielectric: Mixed film **Capacitor electrodes:** Vacuum-deposited Internal construction:

Plastic film Vacuum-deposited electrode Metal contact layer (schoopage) Terminating wire

Encapsulation:

Solvent-resistant, flame-retardant plastic case with epoxy resin seal, UL 94 V-0 **Terminations:**

Tinned wire.

Marking:

Colour: Red. Marking: Black. Epoxy resin seal: Red

Electrical Data

Capacitance range:

0.01 µF to 22 µF (E12-values on request) Rated voltages:

63 VDC, 100 VDC, 250 VDC, 400 VDC Capacitance tolerances:

±20%, ±10%, ±5%

Operating temperature range: -55° C to +100° C

Climatic test category: 55/100/56 in accordance with IEC

Insulation resistance at +20° C: $C \le 0.33 \ \mu F_{\odot} \ge 3 \times 10^4 M \Omega$ (mean value: $1 \times 10^5 M\Omega$) $C > 0.33 \ \mu\text{F} \ge 10000 \ \text{sec} \ (M\Omega \times \mu\text{F})$ (mean value: 40000 sec)

Measuring voltage: $U_r = 63 \text{ V}: U_{test} = 50 \text{ V/1 min.}$ $U_r \ge 100 \text{ V: } U_{test} = 100 \text{ V/1 min.}$

Test voltage: 1.6 U,, 2 sec.

Dissipation factors at $+ 20^{\circ}$ C: tan δ

at f	C ≤ 0.1 µF	0.1 µF < C ≤ 1.0 µF	C > 1.0 µF
1 kHz	≤ 5 x 10 ⁻³	≤ 5 x 10 ⁻³	≤ 5 x 10 ⁻³
10 kHz	≤ 8 x 10 ⁻³	≤ 9 x 10 ⁻³	-
100 kHz	$\leq 11 \times 10^{-3}$	_	_

Maximum pulse rise time:

Capacitance µF	63 VDC		ime V/µsec rating/test 250 VDC	400 VDC	
0.01 0.022	30/300	30/300	35/350	38/380	
0.033 0.068	15/150	15/150	20/200	25/250	
0.1 0.22	10/100	12/120	15/150	15/150	
0.33 0.68	9/90	9/90	10/100	10/100	
1.0 2.2	6/60	5/50	6/60	9/90	
3.3 6.8	3/30	3/30	6/60	7/70	
10 22	2.5/25	2.5/25	3/30	6/60	

for pulses equal to the rated voltage

Mechanical Tests

Pull test on leads:

 $d \leq 0.8 \ \phi$: 10 N in direction of leads $d > 0.8 \ \phi$: 20 N in direction of leads according to IEC 60068-2-21

Vibration:

6 hours at 10 ... 2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:

1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IEC 60068-2-29

Packing

Available taped and reeled up to and including case size 15 x 26 x 31.5 / PCM 27.5 mm.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

100

60 80 T(°C)

Capacitance change versus temperature

20 40

A voltage derating factor of 1.35 % per K

must be applied from +85° C for DC

voltages and from +75° C for AC

Operational life> 300 000 hours

Failure rate < 2 fit (0.5 x U_r and 40° C)

(f = 1 kHz) (general guide)

ΔC/C (%)

-55

-40 -20

voltages.

Reliability:

Voltage derating:

WIMA MKM 4

Continuation

General Data

Carportitore	6	3 VDC/	/40 VAC	, ,*	100 VDC/63 VAC*			250 VDC/160 VAC*			400 VDC/200 VAC*					
Capacitance	\mathbb{W}	H	L	PCM*	W	Н	L	PCM*	W	Н	L	PCM	W	Н	L	PCM
0.01 µF	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	4	9	13	10*
0.015 "	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	4	9	13	10*
0.022 "	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*	4	9	10	7.5*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	4	9	13	10*
0.033 "	3	8.5	10	7.5*	3	8.5	10	7.5*	3	8.5	10	7.5*	4.5	9.5	10.3	7.5*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	4	9	13	10*
0.047 "	4	9	10	7.5*	4	9	10	7.5*	4	9	10	7.5*	5	10.5	10.3	7.5*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	5	11	13	10*
0.068 "	4	9	10	7.5*	4	9	10	7.5*	4	9	10	7.5*	5	11	13	10*
	4	9	13	10*	4	9	13	10*	4	9	13	10*	5	11	18	15*
0.1 µF	4.5	9.5	10.3	7.5*	4.5	9.5	10.3	7.5*	4.5	9.5	10.3	7.5*	6	12	13	10*
	5	11	13	10*	5	11	13	10*	5	11	13	10*	5	11	18	15*
	5	11	18	15*	5	11	18	15*	5	11	18	15*				
0.15 "	5	10.5	10.3	7.5*	5	10.5	10.3	7.5*	5	10.5	10.3	7.5*	6	12.5	18	15*
	5	11	13	10*	5	11	13	10*	5	11	13	10*	6	15	26.5	22.5*
	5	11	18	15*	5	11	18	15*	5	11	18	15*				
0.22 "	6	12	13	10*	6	12	13	10*	6	12	13	10*	7	14	18	15*
	5	11	18	15*	5	11	18	15*	5	11	18	15*	6	15	26.5	22.5*
0.33 "	6	12.5	18	15*	6	12.5	18	15*	6	12.5	18	15*	8	15	18	15*
	6	15	26.5	22.5*	6	15	26.5	22.5*	6	15	26.5	22.5*	6	15	26.5	22.5*
0.47 "	7	14	18	15*	7	14	18	15*	7	14	18	15*	7	16.5	26.5	22.5
	6	15	26.5	22.5*	6	15	26.5	22.5*	6	15	26.5	22.5*				
0.68 "	8	15	18	15*	8	15	18	15*	8	15	18	15*	10.5	19	26.5	22.5
	6	15	26.5	22.5*	6	15	26.5	22.5*	6	15	26.5	22.5*				
1.0 µF	9	16	18	15*	9	16	18	15*	9	16	18	15*	11	21	26.5	22.5*
	7	16.5	26.5	22.5*	7	16.5	26.5	22.5*	7	16.5	26.5	22.5*	11	21	31.5	27.5*
1.5 "	10.5	19	26.5	22.5*	10.5	19	26.5	22.5*	10.5	19	26.5	22.5*	13	24	31.5	27.5
	9	19	31.5	27.5*	9	19	31.5	27.5*	9	19	31.5	27.5*	1.5		015	07.5
2.2 "	11	21	26.5	22.5*	11	21	26.5	22.5*	11	21	26.5	22.5*	15	26	31.5	27.5
0.0	11	21	31.5	27.5*	11	21	31.5	27.5*	11	21	31.5	27.5*	17		015	07.5
3.3 "	13	24	31.5	27.5	13	24	31.5	27.5	13	24	31.5	27.5	17	29	31.5	27.5
4.7 "	15	26	31.5	27.5	15	26	31.5	27.5	15	26	31.5	27.5	20	39.5	31.5	27.5*
1.0	17	00	21.5	07.5*	17	00	215	07.5*	17	00	215	07.5*	17	29	41.5	37.5*
6.8 "	17	29	31.5	27.5*	17	29	31.5	27.5*	17	29	31.5	27.5*	19	32	41.5	37.5
10 5	15	26	41.5	37.5*	15	26	41.5	37.5*	15	26	41.5	37.5*	0.1	15.5	41 5	075
10 µF	19	32	41.5	37.5	19	32	41.5	37.5	19	32	41.5	37.5	24	45.5	41.5	37.5
15 "	20	39.5	41.5	37.5	20	39.5	41.5	37.5	20	39.5	41.5	37.5				
22 "	24	45.5	41.5	37.5	24	45.5	41.5	37.5	24	45.5	41.5	37.5				

Ød

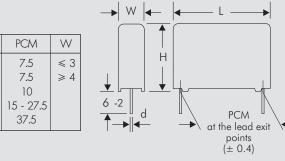
0.5

0.6

0.6

0.8

1.0


* AC voltage: f = 50 Hz; 1.4 x U_{rms} + UDC \leq U_r

** PCM = Printed circuit module = lead spacing

* On ordering please state the required <u>PCM</u> (lead spacing)! If not specified, smaller PCM will be booked.

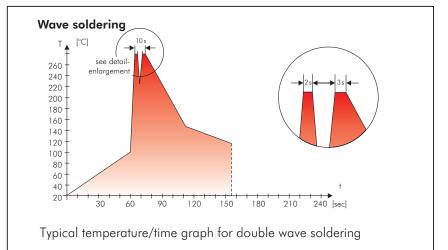
Dims. in mm.

Taped version see page 121.

Recommendation for Processing and Application of **Through-Hole Capacitors**

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures T_{max} < 100 ° C. In practice a preheating duration of t < 5 min. has been proven to be best.


Single wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\,C$ Immersion time: t < 5 sec

Double wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\,C$ Immersion time: $2 \times t < 3 \sec$

Due to different soldering processes and heat requirements the graphs are to be regarded as a recommendation only.

WIMA Quality and Environmental Philosophy

ISO 9001:2000 Certification

ISO 9001:2000 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2000 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPCS

The WIMA Process Control System (WPCS) is a quality surveillance and optimization system developed by WIMA. WPCS is a major part of the quality-oriented WIMA production. Points of application of WPCS during production process:

- incoming material inspection
- metallization
- film inspection
- schoopage
- pre-healing lead attachment
- cast resin preparation/ encapsulation
- 100% final inspection
- AQL check

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

- PBB/PBDE

- Arsenic

- Mercurv

- etc.

– Lead

- PCB
- CFC
- Hydrocarbon chloride
- Chromium 6+

We merely use pure, recyclable materials for packing our components, such as:

- carton
- cardboard
- adhesive tape made of paper
- polystyrene

We almost completely refrain from using packing materials such as:

- foamed polystyrene (Styropor®)
- adhesive tapes made of plastic
- metal clips

RoHS Compliance

According to the RoHS Directive 2002/95/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refraind from using such substances since years already.

Tape for lead-free WIMA capacitors

DIN EN ISO 14001:2005

WIMA's environmental management has been established in accordance with the auidelines of DIN EN ISO 14001:2005. The certification has been granted in June 2006.

Typical Dimensions for Taping Configuration

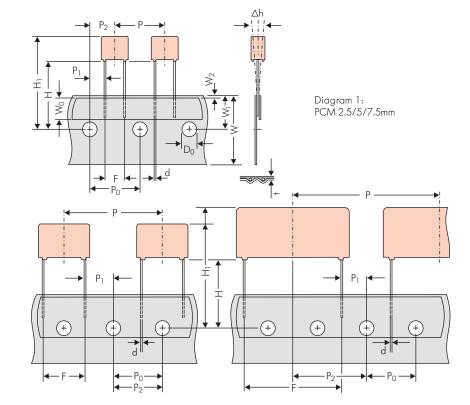


Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm *PCM 27.5 taping possible with two feed holes between components

		Dimensions for Radial Taping								
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping	PCM 27.5 taping		
Carrier tape width	W	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5		
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape		
Hole position	W1	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5		
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.		
Feed hole diameter	D ₀	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2		
Pitch of component	Р	12.7 ±1.0	12.7 ±1.0	12.7 ±1.0	25.4 ±1.0	25.4 ±1.0	38.1 ±1.5	38.1 ±1.5 or 50.8 ±1.5		
Feed hole pitch	Po	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	pitch cumulative pitch cumulative pitch 12.7 ±0.3 error max. 12.7 ±0.3 error max.		cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch		
Feed hole centre to lead	P1	5.1 ±0.5	3.85 ±0.7	2.6 ±0.7	7.7 ±0.7	5.2 ±0.7	7.8 ±0.7	5.3 ±0.7		
Hole centre to component centre	P ₂	6.35 ±1.3	6.35 ±1.3	6.35 ±1.3	12.7 ±1.3	12.7 ±1.3	19.05 ±1.3	19.05 ±1.3		
Feed hole centre to bottom	Н▲	16.5 ±0.3	16.5 ±0.3	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5		
edge of the component		18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5		
Feed hole centre to top edge of the component	H1	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 24.5 to 31.5	H+H _{component} < H ₁ 25.0 to 31.5	H+H _{component} < H ₁ 26.0 to 37.0	H+H _{component} < H ₁ 30.0 to 43.0	H+H _{component} < H ₁ 35.0 to 45.0		
Lead spacing at upper edge of carrier tape	F	2.5 ±0.5	5.0 ^{+0.8} _{-0.2}	7.5 ±0.8	10.0 ±0.8	15 ±0.8 22.5 ±0		27.5 ±0.8		
Lead diameter	d	0.4 ±0.05	0.5 ±0.05	$^{\circ}0.5 \pm 0.05 \text{ or } 0.6 + 0.06 \\ -0.05 $	$^{\circ}0.5 \pm 0.05 \text{ or } 0.6 + 0.06 - 0.05$	0.8 +0,08 -0.05	0.8 +0,08 -0.05	0.8 +0.08 -0.05		
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.		
Total tape thickness	t	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2 0.7 ±0.2 0.7 ±0.2 0.7 ±0.2		0.7 ±0.2	0.7 ±0.2			
		ROLL//	AMMO	AMMO						
Package (see also page 122)	•	REEL Ø 360 max. Ø 30 ±1	$\left. B \begin{array}{c} 52 \pm 2 \\ 58 \pm 2 \end{array} ight\} depending on \ comp. \ dimensions$		REEL \$\vert^{\vee\$ 360 max.} \$\vee\$ \$					
Unit					see details page 124.					

 \blacktriangle Please give "H" dimensions and desired packaging type when ordering.

• Diameter of leads see General Data.

PCM 10 and PCM 15 can be crimped to PCM 7.5. Position of components according to PCM 7.5 (sketch 1). $P_0 = 12.7$ or 15.0 is possible

Please clarify customer-specific deviations with the manufacturer.

Dims in mm.